Cell-free Systems: Recent Advances and Future Outlook
Cell-free systems utilize a subset of cellular components without intact cell wall and/or membranes. The system was first invented for use in fermentation. Subsequent improvements enabled its application in protein synthesis, which is still the most common use of the system. Lately, attempts have been reported where metabolic engineering concepts and techniques were applied to cell-free systems and/or vice-versa. These attempts and advances led to exciting discoveries about biochemical reactions, as well as properties and/or structures of cellular components that make up complex biological systems. This review will first provide a basic overview and brief history of the cell-free system. Then, explanation on recent advances in the field will be provided, followed by notes on the innovative applications. Future outlook of the field will also be covered with the emphasis on how the emerging data science methods can be applied to improve the system and its applicability.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
Instant access to the full article PDF.
Rent this article via DeepDyve
Similar content being viewed by others
Systems Biology: Developments and Applications
Chapter © 2014
Cell-Free Biosystems for Biomanufacturing
Chapter © 2013
Systems Biology
Chapter © 2013
References
- Swartz, J. R. (2018) Expanding biological applications using cell-free metabolic engineering: An overview. Metab. Eng. 50: 156–172. ArticleCASPubMedGoogle Scholar
- Buchner, E. (1897) Alkoholische Gährung ohne Hefezellen. Ber. Dtsch. Chem. Ges. 30: 117–124. ArticleCASGoogle Scholar
- Nirenberg, M. W. and H. J. Matthaei (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Nat. Acad. Sci. USA. 47: 1588–1602. ArticleCASPubMedPubMed CentralGoogle Scholar
- Bechtold, M., E. Brenna, C. Femmer, F. G. Gatti, S. Panke, F. Parmeggiani, and A. Sacchetti (2012) Biotechnological development of a practical synthesis of ethyl (S)-2-ethoxy-3-(p-methoxyphenyl)propanoate (EEHP): Over 100-fold productivity increase from yeast whole cells to recombinant isolated enzymes. Org. Process Res. Dev. 16: 269–276. ArticleCASGoogle Scholar
- Korman, T. P., P. H. Opgenorth, and J. U. Bowie (2017) A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Comm. 8: 15526. ArticleCASGoogle Scholar
- Takors, R. (2012) Scale-up of microbial processes: Impacts, tools and open questions. J. Biotechnol. 160: 3–9. ArticleCASPubMedGoogle Scholar
- Calhoun, K. and J. R. Swartz (2006) Total amino acid stabilization during cell-free protein synthesis reactions. J. Biotechnol. 123: 193–203. ArticleCASPubMedGoogle Scholar
- Shrestha, P., T. M. Holland, and B. C. Bundy (2012) Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing. Biotechniques. 53: 163–174. ArticleCASPubMedGoogle Scholar
- Didovyk, A., T. Tonooka, L. Tsimring, and J. Hasty (2017) Rapid and scalable preparation of bacterial lysates for cell-free gene expression. ACS Synth. Biol. 6: 2198–2208. ArticleCASPubMedPubMed CentralGoogle Scholar
- Kim, D. M. and J. R. Swartz (2000) Oxalate improves protein synthesis by enhancing ATP supply in a cell-free system derived from Escherichia coli. Biotechnol. Lett. 22: 1537–1542. ArticleCASGoogle Scholar
- Nagumo, Y., K. Fujiwara, K. Horisawa, H. Yanagawa, and N. Doi (2016) PURE mRNA display for in vitro selection of single-chain antibodies. J. Biochem. 159: 519–526. ArticleCASPubMedGoogle Scholar
- Smith, M. T., S. D. Berkheimer, C. J. Werner, and B. C. Bundy (2014) Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. Biotechniques. 56: 186–193. ArticleCASPubMedGoogle Scholar
- Liu, D. V., J. F. Zawada, and J. R. Swartz (2005) Streamlining Escherichia coli S30 extract preparation for economical cell-free protein synthesis. Biotechnol. Prog. 21: 460–465. ArticleCASPubMedGoogle Scholar
- Lu, Y. (2017) Cell-free synthetic biology: Engineering in an open world. Synth. Sys. Bioltechnol. 2: 23–27. ArticleGoogle Scholar
- Lim, H. J. and D. M. Kim (2019) Cell-free metabolic engineering: Recent developments and future prospects. Methods Protoc. 2: 33. ArticleCASPubMed CentralGoogle Scholar
- Brodel, A. K., A. Sonnabend, and S. Kubick (2014) Cell-free protein expression based on extracts from CHO cells. Biotechnol. Bioeng. 111: 25–36. ArticlePubMedCASGoogle Scholar
- Ezure, T., K. Nanatani, Y. Sato, S. Suzuki, K. Aizawa, S. Souma, M. Ito, T. Hohsaka, G. von Heijine, T. Utsumi, K. Abe, E. Ando, and N. Uozumi (2014) A cell-free translocation system using extracts of cultured insect cells to yield functional membrane proteins. PLoS One. 9: e112874. ArticlePubMedPubMed CentralCASGoogle Scholar
- Takai, K., T. Sawasaki, and Y. Endo (2010) Practical cell-free protein synthesis system using purified wheat embryos. Nat. Protoc. 5: 227–238. ArticleCASPubMedGoogle Scholar
- Kuruma, Y. and T. Ueda (2015) The PURE system for the cell-free synthesis of membrane proteins. Nat. Protoc. 10: 1328–1344. ArticleCASPubMedGoogle Scholar
- Michel-Reydellet, N., K. Calhoun, and J. R. Swartz (2004) Amino acid stabilization for cell-free protein synthesis by modification of the Escherichia coli genome. Metab. Eng. 6: 197–203. ArticleCASPubMedGoogle Scholar
- Giel, J. L., D. Rodionov, M. Liu, F. R. Blattner, and P. J. Kiley (2006) IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O-regulated genes in Escherichia coli. Mol. Microbiol. 60: 1058–1075. ArticleCASPubMedGoogle Scholar
- Boyer, M. E., J. A. Stapleton, J. M. Kuchenreuther, C. W. Wang, and J. R. Swartz (2008) Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol. Bioeng. 99: 59–67. ArticleCASPubMedGoogle Scholar
- De La Paz, L. (2016) Elucidating in vitro Activation of [FeFe] Hydrogenase. Ph.D. Thesis. Stanford University, Stanford, CA, USA. Google Scholar
- Peters, J. W., W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science. 282: 1853–1858. ArticleCASPubMedGoogle Scholar
- Kuchenreuther, J. M., W. K. Myers, T. A. Stich, S. J. George, Y. Nejatyjahromy, J. R. Swartz, and R. D. Britt (2013) A radical intermediate in tyrosine scission to the CO and CN- ligands of FeFe hydrogenase. Science. 342: 472–475. ArticleCASPubMedGoogle Scholar
- Kuchenreuther, J. M., W. K. Myers, D. L. M. Suess, T. A. Stich, V. Pelmenschikov, S. A. Shiigi, S. P. Cramer, J. R. Swartz, R. D. Britt, and S. J. George (2014) The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science. 343: 424–427. ArticleCASPubMedPubMed CentralGoogle Scholar
- Dinis, P., D. L. M. Suess, S. J. Fox, J. E. Harmer, R. C. Driesener, L. De La Paz, J. R. Swartz, J. W. Essex, R. D. Britt, and P. L. Roach (2015) X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. Proc. Nat. Acad. Sci. USA. 112: 1362–1367. ArticleCASPubMedPubMed CentralGoogle Scholar
- Lu, Y., J. P. Welsh, W. Chan, and J. R. Swartz (2013) Escherichia coli-based cell free production of flagellin and ordered flagellin display on virus-like particles. Biotechnol. Bioeng. 110: 2073–2085. ArticleCASPubMedGoogle Scholar
- Wuu, J. J. and J. R. Swartz (2008) High yield cell-free production of integral membrane proteins without refolding or detergents. Biochim. Biophys. Acta. 1778: 1237–1250. ArticleCASPubMedGoogle Scholar
- Schoborg, J. A., J. M. Hershewe, J. C. Stark, W. Kightlinger, J. E. Kath, T. Jaroentomeechai, A. Natarajan, M. P. DeLisa, and M. C. Jewett (2018) A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases. Biotechnol. Bioeng. 115: 739–750. ArticleCASPubMedGoogle Scholar
- Kolb, V. A., E. V. Makeyev, W. W. Ward, and A. S. Spirin (1996) Synthesis and maturation of green fluorescent protein in a cell-free translation system. Biotechnol. Lett. 18: 1447–1452. ArticleCASGoogle Scholar
- Kuchenreuther, J. M., S. A. Shiigi, and J. R. Swartz (2014) Cellfree synthesis of the H-Cluster: A model for the in vitro assembly of metalloprotein metal centers. pp. 49–72. In: J. C. Fontecilla-Camps and Y. Nicolet (eds.). Metalloproteins. Humana Press, Totowa, NJ, USA. ChapterGoogle Scholar
- Oza, J. P., H. R. Aerni, N. L. Pirman, K. W. Barber, C. M. Ter Haar, S. Rogulina, M. B. Amrofell, F. J. Isaacs, J. Rinehart, and M. C. Jewett (2015) Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nat. Commun. 6: 8168. ArticlePubMedGoogle Scholar
- Yang, J. P., T. Cirico, F. Katzen, T. C. Peterson, and W. Kudlicki (2011) Cell-free synthesis of a functional G protein-coupled receptor complexed with nanometer scale bilayer discs. BMC Biotechnol. 11: 57. ArticleCASPubMedPubMed CentralGoogle Scholar
- Young, E. T. (1970) Cell-free synthesis of bacteriophage T4 glucosyl transferase. J. Mol. Biol. 51: 591–604. ArticlePubMedGoogle Scholar
- Min, S. E., K. H. Lee, S. W. Park, T. H. Yoo, C. H. Oh, J. H. Park, S. Y. Yang, Y. S. Kim, and D. M. Kim (2016) Cell-free production and streamlined assay of cytosol-penetrating antibodies. Biotechnol. Bioeng. 113: 2107–2112. ArticleCASPubMedGoogle Scholar
- Martin, R. W., N. I. Majewska, C. X. Chen, T. E. Albanetti, R. B. C. Jimenez, A. E. Schmelzer, M. C. Jewett, and V. Roy (2017) Development of a CHO-based cell-free platform for synthesis of active monoclonal antibodies. ACS Synth. Biol. 6: 1370–1379. ArticleCASPubMedGoogle Scholar
- Stech, M., O. Nikolaeva, L. Thoring, W. F. M. Stöcklein, D. A. Wüstenhagen, M. Hust, S. Dübel, and S. Kubick (2017) Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates. Sci. Rep. 7: 12030. ArticleCASPubMedPubMed CentralGoogle Scholar
- Takeda, H., T. Ogasawara, T. Ozawa, A. Muraguchi, P. J. Jih, R. Morishita, M. Uchigashima, M. Watanabe, T. Fujimoto, T. Iwasaki, Y. Endo, and T. Sawasaki (2015) Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci. Rep. 5: 11333. ArticlePubMedPubMed CentralGoogle Scholar
- Koo, J., S. Shiigi, M. Rohovie, K. Mehta, and J. R. Swartz (2016) Characterization of [FeFe] hydrogenase O sensitivity using a new, physiological approach. J. Biol. Chem. 291: 21563–21570. ArticleCASPubMedPubMed CentralGoogle Scholar
- Koo, J., T. Schnabel, S. Liong, N. H. Evitt, and J. R. Swartz (2017) High-throughput screening of catalytic H production. Angew. Chem. Int. Ed. Engl. 56: 1012–1016. ArticleCASPubMedGoogle Scholar
- Koo, J. and J. R. Swartz (2018) System analysis and improved [FeFe] hydrogenase O tolerance suggest feasibility for photosynthetic H production. Metab. Eng. 49: 21–27. ArticleCASPubMedGoogle Scholar
- Liu, C. C. and P. G. Schultz (2010) Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79: 413–444. ArticleCASPubMedGoogle Scholar
- Moses, J. E. and A. D. Moorhouse (2007) The growing applications of click chemistry. Chem. Soc. Rev. 36: 1249–1262. ArticleCASPubMedGoogle Scholar
- Kolb, H. C., M. G. Finn, and K. G Sharpless (2001) Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40: 2004–2021. ArticleCASPubMedGoogle Scholar
- Baskin, J. M., J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, and C. R. Bertozzi (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc. Nat. Acad. Sci. USA. 104: 16793–16797. ArticleCASPubMedPubMed CentralGoogle Scholar
- Wang, F., W. Niu, J. Guo, and P. G. Schultz (2012) Unnatural amino acid mutagenesis of fluorescent proteins. Angew. Chem. Int. Ed. Engl. 51: 10132–10135. ArticleCASPubMedGoogle Scholar
- Wong, H. E., S. P. Pack, and I. Kwon (2016) Positional effects of hydrophobic non-natural amino acid mutagenesis into the surface region of murine dihydrofolate reductase on enzyme properties. Biochem. Eng. J. 109: 1–8. ArticleCASGoogle Scholar
- Key, H. M., P. Dydio, D. S. Clark, and J. F. Hartwig (2016) Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature. 534: 534–537. ArticleCASPubMedGoogle Scholar
- Dydio, P., H. M. Key, A. Nazarenko, J. Y. E. Rha, V. Seyedkazemi, D. S. Clark, and J. F. Hartwig (2016) An artificial metalloenzyme with the kinetics of native enzymes. Science. 354: 102–106. ArticleCASPubMedGoogle Scholar
- Bailey, J. B., R. H. Subramanian, L. A. Churchfield, and F. A. Tezcan (2016) Metal-directed design of supramolecular protein assemblies. Methods Enzymol. 580: 223–250. ArticleCASPubMedPubMed CentralGoogle Scholar
- Zhang, P., H. Feng, J. Yang, H. Jiang, H. Zhou, and Y. Lu (2019) Detection of inorganic ions and organic molecules with cell-free biosensing systems. J. Biotechnol. 300: 78–86. ArticleCASPubMedGoogle Scholar
- Jang, Y. J., K. H. Lee, T. H. Yoo, and D. M. Kim (2019) Interfacing a personal glucose meter with cell-free protein synthesis for rapid analysis of amino acids. Anal. Chem. 91: 2531–2535. ArticleCASPubMedGoogle Scholar
- Byun, J. Y., K. H. Lee, Y. B. Shin, and D. M. Kim (2019) Cascading amplification of immunoassay signal by cell-free expression of firefly luciferase from detection antibody-conjugated DNA in an Escherichia coli extract. ACS Sens. 4: 93–99. ArticleCASPubMedGoogle Scholar
- Pardee, K., S. Slomovic, P. Q. Nguyen, J. W. Lee, N. Donghia, D. Burrill, T. Ferrante, F. R. McSorley, Y. Furuta, A. Vernet, M. Lewandowski, C. N. Boddy, N. S. Joshi, and J. J. Collins (2016) Portable, on-demand biomolecular manufacturing. Cell. 167: 248–259.e12. ArticleCASPubMedGoogle Scholar
- Luna, J. M., R. D. Rufino, and L. A. Sarubbo (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf. Environ. Prot. 102: 558–566. ArticleCASGoogle Scholar
- Park, Y. J., H. J. Choi, and W. H. Joo (2017) Effects of cell-free solutions of probiotic bacteria on putrescine production by food borne-pathogens in ornithine decarboxylase broth. Proceedings of the 2017 KSBB Fall Meeting and International Symposium. October 11–13. Busan, Korea.
- Kightlinger, W., K. E. Duncker, A. Ramesh, A. H. Thames, A. Natarajan, J. C. Stark, A. Yang, L. Lin, M. Mrksich, M. P. DeLisa, and M. C. Jewett (2019) A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat. Commun. 10: 5404. ArticlePubMedPubMed CentralCASGoogle Scholar
- Jaroentomeechai, T., J. C. Stark, A. Natarajan, C. J. Glasscock, L. E. Yates, K. J. Hsu, M. Mrksich, M. C. Jewett, and M. P. DeLisa (2018) Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat. Commun. 9: 2686. ArticlePubMedPubMed CentralCASGoogle Scholar
- Karim, A. S. and M. C. Jewett (2018) Cell-free synthetic biology for pathway prototyping. Methods Enzymol. 608: 31–57. ArticleCASPubMedGoogle Scholar
Acknowledgements
This study was supported by the Hongik University new faculty research support fund.
The authors declare no conflict of interest.
Neither ethical approval nor informed consent was required for this study.